Distributive Lattices from Graphs
نویسنده
چکیده
Several instances of distributive lattices on graph structures are known. This includes c-orientations (Propp), α-orientations of planar graphs (Felsner/de Mendez) planar flows (Khuller, Naor and Klein) as well as some more special instances, e.g., spanning trees of a planar graph, matchings of planar bipartite graphs and Schnyder woods. We provide a characterization of upper locally distributive lattices (ULD-lattices) in terms of edge colorings of their Hasse diagrams. In many instances where a set of combinatorial objects carries the order structure of a lattice this characterization yields a slick proof of distributivity or UL-distributivity. This is exemplified by proving a distributive lattice structure on the ∆-bonds of a graph. All the previously known instances of distributive lattices from graphs turn out to be special ∆-bond lattices. Let a D-polytope be a polytope that is closed under componentwise max and min, i.e., the points of the polytope are an infinite distributive lattice. A characterization of D-polytopes reveals that each D-polytope has an underlying graph model. The associated graph models have two descriptions either edge based or vertex based.
منابع مشابه
Distributive Lattices, Polyhedra, and Generalized Flow
AD-polyhedron is a polyhedron P such that if x, y are in P then so are their componentwise max and min. In other words, the point set of a D-polyhedron forms a distributive lattice with the dominance order. We provide a full characterization of the bounding hyperplanes of D-polyhedra. Aside from being a nice combination of geometric and order theoretic concepts, Dpolyhedra are a unifying genera...
متن کاملDistributive lattices with strong endomorphism kernel property as direct sums
Unbounded distributive lattices which have strong endomorphism kernel property (SEKP) introduced by Blyth and Silva in [3] were fully characterized in [11] using Priestley duality (see Theorem 2.8}). We shall determine the structure of special elements (which are introduced after Theorem 2.8 under the name strong elements) and show that these lattices can be considered as a direct product of ...
متن کامل0 N ov 2 00 8 Distributive Lattices , Polyhedra , and Generalized Flow
AD-polyhedron is a polyhedron P such that if x, y are in P then so are their componentwise max and min. In other words, the point set of a D-polyhedron forms a distributive lattice with the dominance order. We provide a full characterization of the bounding hyperplanes of D-polyhedra. Aside from being a nice combination of geometric and order theoretic concepts, Dpolyhedra are a unifying genera...
متن کاملDistributive lattices, polyhedra, and generalized flows
AD-polyhedron is a polyhedron P such that if x, y are in P then so are their componentwise max and min. In other words, the point set of a D-polyhedron forms a distributive lattice with the dominance order. We provide a full characterization of the bounding hyperplanes of D-polyhedra. Aside from being a nice combination of geometric and order theoretic concepts, Dpolyhedra are a unifying genera...
متن کاملFUZZY ORDERED SETS AND DUALITY FOR FINITE FUZZY DISTRIBUTIVE LATTICES
The starting point of this paper is given by Priestley’s papers, where a theory of representation of distributive lattices is presented. The purpose of this paper is to develop a representation theory of fuzzy distributive lattices in the finite case. In this way, some results of Priestley’s papers are extended. In the main theorem, we show that the category of finite fuzzy Priestley space...
متن کامل